Sea level and ocean/land/ice observations and models

Science discussions with Mike Freilich
Jet Propulsion Laboratory
December 10, 2010

- Sea level and altimetry (Lee-Lueng Fu)

- Land/ice observations and models (Erik lvins)

- ISSM: ice sheet data assimilation (Eric Larour)

- ECCO2: ocean and sea ice data assimilation (Dimitris Menemenlis)
- Sea ice observations and models (Ron Kwok)

- Ice sheet/ocean interactions (Eric Rignot)
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peat-pass radar interferometry all
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Ice shelves holding up
the ice sheets

* Wide-swath altimetry allows us to measure the ocean
currents transporting heat to melt the ice shelves



[/ Ocean-Ice Modeling Effort




8-yr GRACE ice loss record
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At the Antarctic Peninsula



ISSM: Ice Sheet System Model.

« finite element model, anisotropic meshing -> refine model where
physics are warranted.

elarge scale capabilities: high resolution (1km horizontal, 10 layers
vertical).

» multi-model: 2D, 3D higher-order and 3D Full-Stokes

« data assimilation: optimize unknown parameters ( basal stress and ice
rigidity) using the adjoint model (inverse control method) and surface
velocity data from InSAR.

Basal Stress (kPa), Greenland

o(kPa)
Large scale inversion of basal 200
stress over the Greenland Ice
Sheet. A Full-Stokes model was
used to inverse the basal stress
using control methods and

InSAR surface velocities from

Joughin 2010.
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Large scale inversion of
basal stress over the 180
Antarctica Ice Sheet. A 3F
Blatter/Pattyn model was 160
used to invert the basal 140
stress using control
methods and InSAR surface 12
velocities (Rignot, 4100
unpublished). Larour, GRL e
80 |1 2010 in revision.
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Pine Island Glacier: assimilation of
basal stress using 2D (frame A),
3D Blatter/Pattyn (frame B) and
3D Full-Stokes (frame C) models.
Basal stress near the grounding
line is extremely model
dependent -> need for Full-Stokes
locally. Morlighem et al 2010.
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Eddying global-ocean and sea-ice data synthesis for improved estimates and models of ocean carbon
E‘ ‘ O 2 cycle, understanding recent evolution of polar oceans, monitoring time-evolving term balances within

and between different components of the Earth system, and many more science applications.

Velocity (m/s)

At 15 m depth Jan 1992



Ice shelf cavities in ECCO2
(Michael Schodlok, JPL/JIFRESSE)

Sea lce Thickness: 01-Jan-1980

Mean Melt Rate dh/dt [m/a]
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ECCO2 basal melt estimate
(59 mSv) is double previous
(BRIOS) estimate, more
consistent with mass loss
derived from ICESat/GLAS.

Sea ice in the coupled system
is at the heart of the “ice
pump” mechanism governing
sub-ice shelf cavity circulation
and an essential ingredient in
the production of very dense
High Salinity Shelf Water, which
is the source of Antarctic
Bottom Water.



Observations of sea ice kinematics
(Ron Kwok and Gunnar Spreen, JPL)
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Ice-sheet/Ocean Interactions
1 m/yr
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*Surface mass balance steady in Antarctica
but declining 100% by decade in Greenland
due to enhanced melt.

*Yet surface melt alone cannot explain rapid’
changes in glacier dynamics.

1969

Rapid ice sheet changes at low elevation

Significant oceanic changes but
impact on land ice is poorly

*Why? Ice sheets melt from the bottom

documented
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Unrealistically low melt

Bathymetry BEDMAP/IceSat
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NASA plays a critical role:
IlceBridge: dhdt, H, bathymetry
*ECCO2 model/data assimilation
*|SSM model/data assimilation
- high-res, continental view.

Consistent with satellite estimates
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